Mapping Vulnerability to Wildfire: Property Losses and Suppression Costs

September 10, 2008

California Climate Change Conference Sacramento, CA

- A. Westerling UC Merced
- B. Bryant RAND
- H. Preisler USFS

California Energy Commission
NOAA OGP ★ USDA Forest Service

August 1996 observed

Map of Probabilities (%) of > 200ha burn areas Red dots are observed pixels with >200ha burns

sresA2

sresB1

Where do we summarize Variability?

vs

Where can we assess the effects of Policy?

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change	Development Scenarios
cnrmcm3	Analog	VIC simulation	statistical modeling	Lo/mid/hi Population growth
gfdlcm21		modeling	Clustering/footprint	
microc32med				G , 1
mpiecham5				Impacts
ncarccsm3				Property Losses
ncarpcm1				Suppression Costs Ecosystem Services

sresA2

sresB1

Future Emissions Scenarios are a choice That can be affected by Policy

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change	Development Scenarios
cnrmcm3	Analog	alog VIC simulation statistical modeling	Lo/mid/hi Population growth	
gfdlcm21	BCSD	modeling		
microc32med				Clustering/footprint
mpiecham5				Impacts
ncarccsm3				Property Losses
ncarpcm1				Suppression Costs Ecosystem Services

Cumulative Water-Year Moisture Deficit: 2070-99 vs 1961-90

Cumulative Water-Year Moisture Deficit: 2070-99 vs 1961-90

sresA2

sresB1

Variation across climate models Has important implications for wildfire

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change	Development Scenarios
cnrmcm3	Analog	modeling	statistical	Lo/mid/hi Population growth
gfdlcm21	BCSD		modeling	
microc32med				Clustering/footprint
mpiecham5				Impacts
ncarccsm3				Property Losses Suppression Costs
ncarpcm1				Ecosystem Services

Cumulative Water-Year Moisture Deficit: 2070-99 vs 1961-90

Cumulative Water-Year Moisture Deficit: 2070-99 vs 1961-90

sresA2

sresB1

Statistical models of wildfire project fireclimate-vegetation interactions of current *managed* fire regimes onto future climate

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change	Development Scenarios
cnrmcm3	Analog	VIC simulation	statistical modeling	Lo/mid/hi Population growth
gfdlcm21	BCSD		modeling	Clustering/footprint
microc32med				Grade may root prime
mpiecham5				Impacts
ncarccsm3				Property Losses
ncarpcm1				Suppression Costs Ecosystem Services

sresA2

sresB1

Current fire and fuels management practice and resource constraints are implicit

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change	Development Scenarios
cnrmcm3	Analog	VIC simulation	statistical modeling	Lo/mid/hi Population growth
gfdlcm21	BCSD		modeling	Clustering/footprint
microc32med				eraseerg, reesprinte
mpiecham5				Impacts
ncarccsm3				Property Losses
ncarpcm1				Suppression Costs Ecosystem Services

sresA2

sresB1

How future growth interacts with changing fire regimes is largely a matter of *Policy*

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change	Development Scenarios
cnrmcm3	Analog	VIC simulation	statistical modeling	Lo/mid/hi Population growth
gfdlcm21	BCSD			Clustering/footprint
microc32med				Crustering/100tprint
mpiecham5				Impacts
ncarccsm3				Property Losses
ncarpcm1				Suppression Costs Ecosystem Services

Spatial uncertainties regarding urban density

- In theory, there exists some structure density over some spatial scale such that wildfires cannot occur (consider contiguous square mile of pavement and buildings as a limiting case).
- However, neither of these numbers are known with precision, and the "burnability" is a function of the interaction.
 - Eg, "fingering" condo developments with high density at the 250 meter level may be more prone to fire than lower density convex developments

Relevant assumptions differ for fire models versus damage models

- For fire model, we are interested in whether urban development masks out vegetation that would otherwise increase the probability of wildfire ignition
- For damages model, we are interested in the how many structures are distributed at densities which are still consumable by wildfire – ie, not too dense, and not empty.
 - Further interaction between value at risk and likelihood of preservation by fire suppression efforts

Resolve both difficulties through bounding

- For fire probabilities, maximum fire reduction occurs when all new "urban" area is built over vegetated area. Minimum occurs when it is distributed over bare and agriculture land.
- For damage estimates, maximum damage occurs at maximal density that still allows fires to burn through area (WUI).

sresA2

sresB1

How the risk of fire + potential impacts is resolved is also affected by policy...

Climate Models	Downscaling Methods	Hydrologic Modeling	Fire & Veg Change
cnrmcm3	Analog	VIC simulation	statistical modeling
gfdlcm21	BCSD		J
microc32med			
mpiecham5			
ncarccsm3			
ncarpcm1			

Development Scenarios

Lo/mid/hi
Population growth

Clustering/footprint

Impacts

Property Losses
Suppression Costs
Ecosystem Services

Increased fire probabilities + greater population = ?

- Zoning: will we restrict growth of the WUI?
- Prevention: can we reduce property losses and suppression costs by 'fire-proofing' new development?
- Current system is very costly. How much increased fire risk could we 'accommodate' with a less costly system? How do we get there?

There is a BIG difference between impacts on property losses and ecosystem services

- Air Quality
- Watershed
- Carbon storage
- Habitat
- Heritage/Esthetic/Recreational values
- ... will these drive more aggressive ecosystem (fire and fuels?) management?

percent of 1961–1990 water year precip San Diego region

from 6 GCMs, A2 and B1 GHG emission scenarios

models are:

- 1: CNRM CM3 -- 2: GFDL CM2.1 -- 3: MIROC3.2 (med)
- 4: MPI ECHAM5 -- 5: NCAR CCSM3 -- 6: NCAR PCM1

percent of 1961–1990 water year precip Sacramento region

from 6 GCMs, A2 and B1 GHG emission scenarios

models are:

- 1: CNRM CM3 -- 2: GFDL CM2.1 -- 3: MIROC3.2 (med)
- 4: MPI ECHAM5 -- 5: NCAR CCSM3 -- 6: NCAR PCM1

Jul-Aug-Sep temperature change from 1961–1990 Sacramento region

from 6 GCMs, A2 and B1 GHG emission scenarios

models are:

- 1: CNRM CM3 -- 2: GFDL CM2.1 -- 3: MIROC3.2 (med)
- 4: MPI ECHAM5 -- 5: NCAR CCSM3 -- 6: NCAR PCM1

A2 GFDL A2 PCM

Different Impacts Within CA

The Greatest **Increased**CA Wildfire **Risks** are
Concentrated **in North**ern California

Greater Uncertainty for Wildfire Risks in Southern California

Percent of West in Drought or Wet Conditions

Mean Western MAMJJA Temperature

Since the mid-1980s

Large Forest Wildfires Have Increased ~300%

Other Large Wildfires Have Not Changed Substantially

